Information Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs
Revisiting some algorithms from lecture 6:
Some not-so-good sorting approaches
Bitonic sort
QuickSort

Concurrent kernels and recursion

40(73)

Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms
Many sorting algorithms are highly sequential
Suitable for parallel implementation?

- Data driven execution

- Data independent execution

41(73)

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution
Computing pattern depends on data
Usually harder to parallellize!

Example: QuickSort.

42(73)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern
Easier to parallellize - always the same plan

Example: Bitonic sort

43(73)

Jj Information Coding / Computer Graphics, ISY, LiTH
P/

Bubble sort

Loop through data, compare neighbors
Extremely sequential
Inefficient
Parallel version: Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, “odd phase” and ”“even phase” (shifted one step)

44(73)

lllllllllll

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH
5

Bubble sort, parallel version
Bubble sort with odd-even transposition method
Compare all items pairwise
Two phases, "odd phase” and “even phase” (shifted one step)

Fully sorted after n phases

Even phase

Odd phase

O(n2)

45(73)

g Information Coding / Computer Graphics, ISY, LiTH
44

Suitable for GPU?

Not as bad as it seems at first look:
- Data independent
- Excellent locality
* Pretty good possibilities to use shared memory (but with
some costly transfers at edges between blocks). Thus close
to optimal in global memory transfers.

- But certainly not optimal at very large sizes

“Better” algorithms don’t necessary beat this all that easily!

46(73)

~—d”‘; Information Coding / Computer Graphics, ISY, LiTH
e

Rank sort
Count number of items that are smaller
Easy to parallelize:
* One thread per item
- Loop through entire data

« Store in index decided from count of number of smaller
items.

47(73)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?

Again, not as bad as it seems at first look:

- Data independent

- Excellent locality - especially good for broadcasting (e.g.

constant memory). Also suitable for shared memory.

- Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!

48(73)

..........

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(As described In lecture 6)

Bitonic set: Two monotonic parts In different direction.

49(73)

12} Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum at
k, consisting of two monotonic parts, one increasing, a- (from
item 1 to k) and one decreasing, a* (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(az, ak+2)...
a” = max(a{, ak+1), max(az, ak+2)...

These two sets are also bitonic and max(a’) = min(a”)!

.
- + A
d d 3

50(73)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence:
partially sorted

The parts must be sorted. Sort them by
bitonic sort!

51(73)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort example

7 ¢ 1 1 ‘ 1 1 1 ‘ 1
1 7 J 3 3 3 J 2 2
8 A 8 J 8 7 4 J 4 3
3 3 7 ¢ 8 2 3 ‘ 4
5 5 5 T 6 Y 6 6 ‘ 5
6 V 6 T 6 5 V 5 l 5 6
y) 4 T 4 4 V| 7 l 7 i 7
4 T 2 2 T 2 V 8 8 8
Bitonic sort of Bitonic sort of main
smaller parts part
Reverse parts Reverse parts

(bitonic merge) (bitonic merge)

52(73)

Information Coding / Computer Graphics, ISY, LiTH

Bigger example

The problem scales nicely, uniformly

¥ ¥ : 3 . - I 1
L3 it 3 I” 3 ” I 7 -
I e e e e —
S P
1[2 1 m H—— ﬁ TR t‘—g——

More stages gives longer stages
(Image from Wikipedia)

53(73)

g Information Coding / Computer Graphics, ISY, LiTH
e

g
4,
g

Get those steps right
Step length
Step direction
Comparison direction

Calculated from stage number and stage
length

54(73)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Code examples
Sequential
Recursive example

Iterative example

55(73)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
- Data independent, no worst case
- Fast: O(n-log2n) (Why?)
- Good locality in some parts

but

* Big leaps In addressing for some parts

56(73)

“
‘”h\t.

Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?

Small leaps: Can be computed within one block.
Shared memory friendly.

Big leaps (>number of threads/block): No
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!

57(73)

d Information Coding / Computer Graphics, ISY, LiTH
4

QuickSort

Very popular algorithm for sequential implementation

Compare to pivot, form
two subsets, repeat

Choose pivot

X

v y ~a

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal

58(73)

d Information Coding / Computer Graphics, ISY, LiTH
=

QuickSort is

Fast: O(n-logn) in typical cases
O(n2) in the worst case
Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing
but optimal

59(73)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU

Initially ignored as impractical
CUDA implementations exist

Data driven approaches increasingly suitable as
GPUs become more flexible

60(73)

Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort

Several stages to consider:
* Pivot selection. Usually just grab one.
- Comparisons
» Partitioning

 Concatenate result

61(73)

Information Coding / Computer Graphics, ISY, LiTH

Pivot selection

If we could always pick a pivot that splits the data in half...

A\ L o | <
Th‘atkv\'uou'ld be greeat...

!
!

62(73)

Information Coding / Computer Graphics, ISY, LiTH

« COMNG
%
C
h‘ t
o -
. .
e -
-
"‘h
NG

but you can’t do that without sorting! But
how about a random one?

THATS THE
PROBLEM

ate. Ing.

NINE NINE

OVER HERE NINE NINE
WE HAVE OUR NINE NINE
RANDOM NUMBER \

WITH RAN-
DOMNESS -
YOU CAN
NEVER BE
SURE.

Syndic

GENERATOR.

1ofaso® 2001 United Feature

There is a worst case caused by bad pivots. Live with it!

63(73)

Information Coding / Computer Graphics, ISY, LiTH

Comparisons
Easy to parallelize

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)

No problem!

64(73)

g Information Coding / Computer Graphics, ISY, LiTH
24

“
4”,'“' ~

Partitioning
The big problem!
Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer

65(73)

. COMNG _
-~ “4,

s 4 ’..
. o -
. -

‘|" v‘f

i T

Information Coding / Computer Graphics, ISY, LiTH

In-place sorting not feasible

Split to two list of same size as original. Massive
number of threads!

Then we must pack to smaller size.

A B/CDIEFGH

66(73)

1?} Information Coding / Computer Graphics, ISY, LiTH

Packing to smaller size not trivial
Data dependent

One possibility: Count occupied spaces to simplify the
problem. Create a look-up table for addressing.

A C|D F H
1T 01T 10 10 1
1 2 1 1
3 Vi
S

67(73)

gj} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Thus, QuickSort is not impossible, but more
complex than before.

Note:
GPUs have Compare-And-Swap atomics!

GPUs favor massive numbers of threads. One
thread per comparison is more than OK!

See also lecture 5 and 6

68(73)

g Information Coding / Computer Graphics, ISY, LiTH
44

“
"4")“_ "~

Recursion
GPUs can’t do recursion efficiently... or can they?
Since Kepler we have concurrent kernels
Not only a matter of launching kernels from CPU!
A kernel can spawn new kernels!

Do recursion by spawning new kernels!

69(73)

..........

‘g Information Coding / Computer Graphics, ISY, LiTH
'.,.%. vj

Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.

I . N — (D

=l] [[[[(0 (i G

- [0 (D
m

70(73)

. COMNG

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

__global vwveoid quicksort(int ¥*data, int left, int right)
{

int nleft, nright;

cudaStream t sl, s2;

// Partitions data based on pivot of first element.

// Returns counts in nleft & nright
partition(datat+left, data+right, data[left], nleft, nright); But doeS th|S rea”y

// If a sub-array needs sorting, launch a new grid for it. dO a gOOd JOb on
// Note use of streams to get concurrency between sub-sorts partltlonlng’?
if(left < nright) {

cudaStreamCreateWithFlags(&sl, cudaStreamNonBlocking);

quicksort<<< ..., sl >>>(data, left, nright);

}
if(nleft < right) {

cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking) ;
quicksort<<< ..., 82 >>>(data, nleft, right);

}

__host void launch quicksort(int *data, int count)

{

quicksort<<< ... >>>(data, 0, count-1);

}

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-

speeds-up-quicksort-a=-famitiar-comp-sci-code/ ———

71(73)

!!!!!!

Information Coding / Computer Graphics, ISY, LiTH

Advantages

« Less work for CPU

- Less synchronizing (from CPU side)

- Easier programming!

They claim it matters
this much (but your
milage will vary)

Relative Sorting Performance

72(

73)

.

™
n

w

™
n

()
=

e
tn

[y

-
tn

o

Quicksort Performance
Dynamic Parallel vs. Host-Controlled

wAh N AWANLAN

L airih N\ ANMNAN

= .Uf“ﬂ {11, 1R REBIAEERA L [
|! IV |

e CPU Launch

PN —— we GPU Launch

Increasing Problem Size

d Information Coding / Computer Graphics, ISY, LiTH
4

“
4
%\Y.’ « VP

Recursive CUDA kernels, a promising
improvement

Big change in GPU computing?

Southfork has GPUs that support it.

73(73)

