
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs!
!

Revisiting some algorithms from lecture 6:!
!

Some not-so-good sorting approaches!
!

Bitonic sort!
!

QuickSort!
!

Concurrent kernels and recursion

40(73)

40(73)



Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms!
!

Many sorting algorithms are highly sequential!
!

Suitable for parallel implementation?!
!

• Data driven execution!
!

• Data independent execution

41(73)41(73)



Information Coding / Computer Graphics, ISY, LiTH

Data driven execution!
!

Computing pattern depends on data!
!

Usually harder to parallellize!!
!

Example: QuickSort.

42(73)42(73)



Information Coding / Computer Graphics, ISY, LiTH

Data independent execution!
!

Known computing pattern!
!

Easier to parallellize - always the same plan!
!

Example: Bitonic sort

43(73)43(73)



Information Coding / Computer Graphics, ISY, LiTH

Bubble sort!
!

Loop through data, compare neighbors!
!

Extremely sequential!
!

Inefficient!
!

Parallel version: Bubble sort with odd-even transposition method!
!

Compare all items pairwise!
!

Two phases, ”odd phase” and ”even phase” (shifted one step)

44(73)44(73)



Information Coding / Computer Graphics, ISY, LiTH

Bubble sort, parallel version!
!

Bubble sort with odd-even transposition method!
!

Compare all items pairwise!
!

Two phases, ”odd phase” and ”even phase” (shifted one step)!
!

Fully sorted after n phases

Even phase

O(n2)

Odd phase

45(73)45(73)



Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?!
!

Not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality!
!

• Pretty good possibilities to use shared memory (but with 
some costly transfers at edges between blocks). Thus close 

to optimal in global memory transfers.!
!

• But certainly not optimal at very large sizes!
!

”Better” algorithms don’t necessary beat this all that easily!

46(73)46(73)



Information Coding / Computer Graphics, ISY, LiTH

Rank sort!
!

Count number of items that are smaller!
!

Easy to parallelize:!
!

• One thread per item!
!

• Loop through entire data!
!

• Store in index decided from count of number of smaller 
items.

47(73)47(73)



Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?!
!

Again, not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality - especially good for broadcasting (e.g. 
constant memory). Also suitable for shared memory.!

!
• Again, O(n2): Will grow at very large sizes!

!
!

Two bad ones that are not quite as bad as they seem.!
!

N parallel iterations may beat NlogN sequential ones!

48(73)48(73)



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort!
!

(As described in lecture 6)!
!

Bitonic set: Two monotonic parts in different direction.!
!
!
!
!

49(73)49(73)



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort!
!

(According to Batcher:) Let a be a bitonic set with a maximum at 
k, consisting of two monotonic parts, one increasing, a- (from 

item 1 to k) and one decreasing, a+ (k+1 to n)!
!

Then two new sets can be constructed as!
!

a’ = min(a1, ak+1), min(a2, ak+2)…!
a” = max(a1, ak+1), max(a2, ak+2)…!

!
These two sets are also bitonic and max(a’) ≤ min(a”)!

a”
a’a- a+

50(73)50(73)



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer!

!
Bitonic sort works on a bitonic sequence: 

partially sorted!
!

The parts must be sorted. Sort them by 
bitonic sort!

51(73)51(73)



Information Coding / Computer Graphics, ISY, LiTH

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

Bitonic sort example

Bitonic sort of 
smaller parts

Reverse parts 
(bitonic merge)

Bitonic sort of main 
part

Reverse parts 
(bitonic merge)

52(73)52(73)



Information Coding / Computer Graphics, ISY, LiTH

Bigger example!
!

The problem scales nicely, uniformly

More stages gives longer stages
(Image from Wikipedia)

53(73)53(73)



Information Coding / Computer Graphics, ISY, LiTH

Get those steps right!
!

Step length!
!

Step direction!
!

Comparison direction!
!

Calculated from stage number and stage 
length

54(73)54(73)



Information Coding / Computer Graphics, ISY, LiTH

Code examples!
!

Sequential!
!

Recursive example!
!

Iterative example

55(73)55(73)



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort!
!

• Data independent, no worst case!
!

• Fast: O(n·log2n) (Why?)!
!

• Good locality in some parts!
!

but!
!

• Big leaps in addressing for some parts

56(73)56(73)



Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?!
!

Small leaps: Can be computed within one block. 
Shared memory friendly.!

!
Big leaps (>number of threads/block): No 
synchronization possible between blocks!!

!
But we must synchronize!!

!
-> multiple kernel runs!

57(73)57(73)



Information Coding / Computer Graphics, ISY, LiTH

QuickSort!
!

Very popular algorithm for sequential implementation

Choose pivot

Compare to pivot, form 
two subsets, repeat

Data driven, data dependent reorganization, non-uniform!
!
Fancy name - nobody expect QuickSort to be nothing but optimal

58(73)58(73)



Information Coding / Computer Graphics, ISY, LiTH

QuickSort is!
!

Fast: O(n·logn) in typical cases!
!

O(n2) in the worst case!
!

Data driven, data dependent reorganization, non-uniform!
!

Fancy name - nobody expects QuickSort to be nothing 
but optimal

59(73)59(73)



Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU!
!

Initially ignored as impractical!
!

CUDA implementations exist!
!

Data driven approaches increasingly suitable as 
GPUs become more flexible

60(73)60(73)



Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort!
!

Several stages to consider:!
!

• Pivot selection. Usually just grab one.!
!

• Comparisons!
!

• Partitioning!
!

• Concatenate result

61(73)61(73)



Information Coding / Computer Graphics, ISY, LiTH

Pivot selection!
!

If we could always pick a pivot that splits the data in half…

That would be greeat…

62(73)62(73)



Information Coding / Computer Graphics, ISY, LiTH

but you can’t do that without sorting! But 
how about a random one?

There is a worst case caused by bad pivots. Live with it!

63(73)63(73)



Information Coding / Computer Graphics, ISY, LiTH

Comparisons!
!

Easy to parallelize!
!

One thread per comparison not unreasonable! 
(GPUs don’t have a problem with many threads!)!

!
No problem!

64(73)64(73)



Information Coding / Computer Graphics, ISY, LiTH

Partitioning!
!

The big problem!!
!

Sequential partitioning: Bad!!
!

Parallel partitioning 1: Atomic fetch & increment. 
(GPUs have atomics!)!

!
Parallel partitioning 2: Divide and conquer

65(73)65(73)



Information Coding / Computer Graphics, ISY, LiTH

In-place sorting not feasible!
!

Split to two list of same size as original. Massive 
number of threads!!

!
Then we must pack to smaller size.

A B C D E F G H

A C D F H B E G

66(73)66(73)



Information Coding / Computer Graphics, ISY, LiTH

Packing to smaller size not trivial!
!

Data dependent!
!

One possibility: Count occupied spaces to simplify the 
problem. Create a look-up table for addressing.

A C D F H
1 0 1 1 0 1 0 1
1 2 1 1
3 2
5

67(73)67(73)



Information Coding / Computer Graphics, ISY, LiTH

See also lecture 5 and 6

Thus, QuickSort is not impossible, but more 
complex than before.!

!
Note:!
!

GPUs have Compare-And-Swap atomics!!
!

GPUs favor massive numbers of threads. One 
thread per comparison is more than OK!

68(73)68(73)



Information Coding / Computer Graphics, ISY, LiTH

Recursion!
!

GPUs can’t do recursion efficiently… or can they?!
!

Since Kepler we have concurrent kernels!
!

Not only a matter of launching kernels from CPU!!
!

A kernel can spawn new kernels!!
!

Do recursion by spawning new kernels!

69(73)69(73)



Information Coding / Computer Graphics, ISY, LiTH

Concurrent kernels, Dynamic Parallelism!
!

Less work for the CPU to manage the computation.

70(73)70(73)



Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

But… does this really 
do a good job on 
partitioning?

71(73)71(73)



Information Coding / Computer Graphics, ISY, LiTH

Advantages!
!

• Less work for CPU!
!

• Less synchronizing (from CPU side)!
!

• Easier programming!

They claim it matters 
this much (but your 
milage will vary)

72(73)72(73)



Information Coding / Computer Graphics, ISY, LiTH

Recursive CUDA kernels, a promising 
improvement!

!
Big change in GPU computing?!

!
Southfork has GPUs that support it.!

73(73)73(73)


